RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 61, NUMBER 5 MAY 2000

Steric interaction of an incoming particle with grafted rods: Exact solutions
and unusual force profiles
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We examine the problem of a grafted rod or rods compressed by a sphere, concentrating on the steric force
exerted by the rods on the sphere. We show that this problem can be solved exactly to yield simple and
nontrivial expressions for the repulsive force. In particular, there are several different regimes and in some of
these the force exhibits surprising maxima and minima as a function of compression. This has applications to
systems of stiff grafted polymers, particularly biopolymers. One experimental realization of our system might
be a rod-coil diblock copolymer with the coil grafted to a solid surface.

PACS numbes): 61.41+e, 87.15-v, 36.20—r, 05.20-y

The interaction of grafted polymers with hard bodies is ofsphere experiences a gradually increasing force, due to the
fundamental importance in a number of fields, most notablyeduction in entropy of the rod upon confinement. We will
in colloidal stabilization 1] and cellular biology. Almost all show that this is often not the case. In some regimes the
the focus has been on very flexible polymers, and our undeiforce actually decreases Bisdecreases and in others in can
standing of these kinds of polymers grafted to surfaces i§how both a minimum and a maximum as a functiortHof
now very good[2,3]. There have been several attempts to We begin with a slightly simpler problem, in which the
model what happens when single or many grafted polymeforce does be_have in an intuitive way. In this we r_eplace the
chains are compressed by hard bodiés14]. This models SPhere of radiuR=1 by a disk of radiuk=1, again cen-
the situation for polymerically stabilized colloids as well as téréd above the tether point. In this scenario there are three
several biological scenarios such as the interaction betwedtPMPression regimes.
membrane proteins and foreign bodies. These studies have )
turned up some novel behavior, but have been subject to two (1) H2>L; theerd never touches the disk.
major constraints. First, they have concerned, almost en- () L"—1<H"<L;the rod can touch the disk, but cannot
tirely, very flexible chains. They are thus not applicable toreac_:__h thez edgze of the disk. . .
many biopolymers, which are relatively rigid. Second, they (iii) H"°<L"-1; the rod can only touch the disk at its
often involve approximations, sometimes of a rather uncon€99€:
trolled kind. In this Rapid Communication we try and fill this ) . )
gap by examining the case of a rigid rodlike polymer teth- It is clear that regiméiii ) can only occur ifL>1. We can

ered to a surface and compressed by an incoming Spher%valuate the configurational partition function for the system

This system has two relatively different features. First, it can” all three compression ranges. If we use a spherical polar

be solved exactly to vield mathematically simple solutions coordinate system with the normal to the tether surface as the
yloy icaily P’ 'z axis andé the angle made by the rod with that axis, the
Second, the force curves are nontrivial, and this apparently _ .. .. .
. L ) .. partition function is
simple system can exhibit several regimes, often wit

maxima and minima in the force as a function of compres- -
ey

. 2
sion. zzf d¢ | d@sind=2mcosb,,, 1)
0 Om

Our geometry is shown in Fig. 1. A rodlike molecule of
length L is tethered by one end to a surface. The tether is
such that the rod is free to rotate anywhere above the surface
with no energy penalty. The rod is then compressed by a
sphere of radiu®, with surface-to-surface distance between
the sphere and the tether surface equalltdhe distanced
is the independent variable in our problem, and the force
between the sphere and the rod is the dependent variable. It
is convenient to begin by setting=1, so all lengths are
measured in terms of the sphere radius. We consider first the
symmetrical case where the center of the sphere is directly
above the tether poind=0 in Fig. 1). The general expec-
tation would be that asl is slowly decreased beloWw, the

FIG. 1. Geometry for compression by a sphere. At left is the
case where the rod is touching, but not tangent to the sphere. At
*Also at School of Chemistry, University of Sydney, NSW 2006, right is the case where the compression is stronger and the rod is
Australia. tangent.
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FIG. 3. Force vs height curve for the cake=1.50=0. The

f FIG' 2 thrce f\lglfgzelgh(tj Clljlnlle f(zrr] the C?B@ Otgii;? ;I'hhe units are the same as Fig. 2. Note that the force now has a maxi-
orce is in units o and all lengths are in units & In this o0 o inimum,

case the force is a monotonically increasing function of compres-
sion. It undergoes a sudden jump at contact and a sudden changev"/rb

slope at the crossover between the tangent and nontangent regimes uld expect. it increases monotonically with compression
P 9 g 9M&Pid isskTH™ ! for H<R. The unusual behavior comes from

where 6,, is the minimum possible angle made by the rodregime(Z). One surprise is that the functidn describing the

with the normal. We can find ca, in all three regimes as: force_in_regime (2) exh|b.|ts a maxmgm .atH: _1_

(i) cosb,=1; (ii) cos,=HIL; (i) cosf,=H/\VHZ+1. + \/(2+ J5)L2—2— 5. This maximum implies that in
This allows us to find the Helmholtz free energy  SOMe cases the compression of the rod exhibits a force which

——KTInZ in each case and hence the repulsive fofce initially decreases as the rod becomes more compressed. To

the regime\/L?+1—1<H<L. This gives us the conditions

f1=0, that the maximum occurs in the physical reglop<L<L,,
where L;=3}y2+2y5~1.272 and L,=(3+.5)(1
fz=kTi 2) +./5)"1~1.618. If these conditions are satisfied, the force
H’ will exhibit a maximum as a function of compression.

There are three scenarios for the force versus compression
curve, and these are controlled byThe first(Fig. 2) is for
T PN L<L,, i.e., for rods which are smaller than or close to the
H(1+H%) . . o
sphere radius. In this case the compression is as one would

Upon compression the force behaves in an expected way, §xPect. AsH is gradtizallly decrf:lased there is a sudden jump
increases monotonically with increasing compression, but if§om f=0 to f=kTL"*(1+L) " atH=L. The force then
noncontinuous at the disc edge. increases monotonically with compression. There is a jump
We now carry out the same procedure for the sphere prodD the slope of the force atl=yL“+1—1, where the rod
lem. One important point is that there are again three comchanges from nontangential to tangential, but the force itself

f3:k

pression regimeéFig. 1): is always a monotonic function of compression.
The second cas@ig. 3), L;<L<L,, is nontrivial. Again
(1) H>L, the rod and sphere never touch. as H is decreased below there is a jump in the force.

(2) JLZ+1—1<H<L, the rod and the sphere can touch However, in this case the force rises to a maximum and then
but the rod ends at the sphere, i.e., it is not tangential to thdecreases to a minimum before increasing again.

sphere. The third case(Fig. 4), L>L,, is again surprising, be-
(3) H<VL?+1—1, the rod can touch the sphere, andcause ai decreases below the force also decreases. It
when it does it is tangential to it. then reaches a minimum &i=L?+1-1 and then in-
creases.
From the geometry we can readily evaluated;ps each This calculation is for the case where the grafting point is
case. We find(1) cosf,=1; (2) cosf,=[L?+H*+2H/2L(1  directly below the center of the sphere. There are three dif-
+H)J; (3) cosfy=VH"+2H/1+H. The forces are then ferent scenarios, two of them at least, not intuitively obvious

from a cursory examination of the problem. More generally,
there will a distancel# 0 between the grafting site and the
perpendicular from the sphere to the surface. &0 the
2+2H+H?-L? (3  geometry looks more complicated and a solution by means
(1+H)(L2+H2+2H) of a straightforward extension of trie=0 case looks diffi-
cult. However, the problem is in fact easy, since it is only the
fa=kT[H(H+2)(1+H)] . solid angle excluded by the sphere that matters. This depends
only on the distance from the grafting point to the center of
The force in regimd1) is as expected: if the sphere and the sphere. which isH'=\(H+1)?+d?~1. To obtain
rod cannot touch there can be no steric force. The force ithe correct partition function we thus repla¢e by H'.
regime (3) where the rod is tangential is also much as oneThis allows us to calculate the force in three regimes:

f1=0,

f2:
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FIG. 4. Force vs height curve for the cake=1.7d=0. The

units are the same as Fig. 2. After the initial jump at contact the FIG. 5. Force curve for a brush of rods with=2. The force is

force decreases as the compression increases.

1) H>JA+0)2=d*-1; (2 1+L?—d*-1<H
<J(1+0)2=d?-1; (3) H<1+L2—d?—1.

The vertical forces in these regimes are
fl: 0,

(1+H)(d*+2+2H+H?-L?)
(d?+1+2H+H?)(L2+d?+2H+H?)’

=

(4)

1+H
(2+1+2H+H?)(d?+2H+H?)

f3:kT

The general casd+#0 retains much of the same behavior

seen in the casg=0. Ford> 2L + L? there is always zero
force, i.e., the rod never touches the sphere. Alsa>L

then regime(3) never occurs. However, there are some dif-

ferences, particularly when we take the lirkit-0, i.e., we

in units ofkTp/R, and all lengths are measured in unitsRof

the compressing surface. It is easy to show that for weak
compressions by any surface of revolution thét
=—KkT6,,6,,, and that the slope of the force curve is then
f'=—KkT(6,2+ 6 " 6,), where the prime meansl/dH.
Clearly if 7, is sufficiently negative the force can actually
decrease with decreasihty This can be made more concrete
by considering weak compression by power-law surfaces of
revolution,z=A|x|*, whereA and a are positive constants.
Calculation shows that at contaict<0 for <2 and fora

>4. However, for Za<4, f'>0. The slope of the force
thus depends rather subtly on the compressing surface and
for 2<a<4 we expect nonmonotonic force curves.

Thus far we have shown that the case of a single rod can
be solved exactly and has nontrivial behavior. Although this
is an interesting problem in itself, a natural question to ask is
what occurs if we have many rods grafted to a plane, with
rods per unit are@l5]. We can solve this problem exactly,
and obtain very simple expressions for the force in the limit

bring the sphere into contact with the grafting surface. Fokyhere the rods do not interact with each other, i.e., in the

d=0 we find a force which diverges g4 1. In the case
L<d<(L+1)%2—1 the force at contact is finite,

) T d?+2-L? -
2 contact™ (d2+1)(L2+d2) .
Even in the case<L the force is still finite,
f3 contac= deiz(dz'f‘ 1)71. (6)

The reason for this lack of divergence whew 0 is clear.
Whend=0 the rod has no freedom to move whelr=0.
However, wherd+# 0 the rod can have significant freedom to

limit where the rod diameterd,,q—0. We integrate the
force from rods between an in plane radiuandr +dr. If

H>\/1+L2—1 then the only force that contributesfisand
we need to integrate 2pdf, from r=0 to r
=(1+L)2—(1+H)2. This leads to a simple force law,

2L(H+1)
L2+ H2+2H

, H>J1+L12-1.
@)

fa=2mpkT(1+H)In

If H<V1+L2—1 then the region of integration needs to be

rotate even when the sphere is touching the grafting surfacelivided in two. An inner circle of radius/L2—H2—2H

One other significant difference betwedr-0 andd+0

can be calculated by takingTdlnZ/ad. It turns out that this
force is always equal td/(H+ 1) times the vertical force,

i.e., the force vector always lies on a line connecting the

grafting site and the center of the sphere.

The most notable feature of the force curves is that they
are often nonmonotonic, and it is natural to ask why this

occurs. The partition functior, measures the orientational
freedom of the rod: the largeris, the more freedom the rod
has. The force depends on h@changes wittH. Clearly Z
always decreases with so the force is positive. However,

) : i where f5 contributes, and an outer annulus to radius
is the presence of a horizontal force on the sphere. This force

V(1+L)2—(1+H)2, where f, contributes. The total
force in this region is again fairly simple,

, H<\1+L?-1.
(8

The behavior of this multirod system is simpler than the
single rod system and there is only one type of force curve,
shown in Fig. 5. Several things are to be noted. First, the

Fp=2mpkT(1+H)In

1+H
i 2)

can increase or decrease depending on the local geometry fafrce is always a monotonically increasing function of com-
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pression. The initial force di =L is 0, and for small com- normal. It is likely this problem can be solved exactly, but at
pressions is ZpkT(L—H)/L. Thus, a brush of rods has no the expense of more complicated expressions for the force.
sudden jump in force at contact. Moreover, the initial in-The second extension would be to include rod-rod interac-
crease in force is larger for shorter brushes. For compresions. It is unlikely that an exact solution to this could be
sions belowH=\1+L?—1 the force curve is universal in found, although a virial expansion may provide some ap-
that it depends only ol and not on the length of the rods. proximate expressions. Here we have calculated only the
For very strong compressiond,—0, the force diverges as  steric forces. Naturally there are other forces such as disper-
—InH. sion forces and electrostatic forces which need to be included
In this paper we have shown that a simple and exactlyn a real experimental system. We have also concentrated on
solvable model of grafted rods interacting with a sphere exthe case of an external particle with a given position. There is
hibits somewhat surprising and nontrivial behavior. Much of 3 other class of problems where the force is the independent
the novelty comes from the interaction of a single rod with &, 5riapje and the compression is measured. In these kind of

zfglfreéxvr:ir]t;ﬁz Zr?\%ﬁ(ﬁsgnso?(\)/ﬁir?l fglr];fzriztrvsece'?ﬁgori ::d rE(’)‘(?B’roblems sudden jumps in the height can occur as a result of
y . Y905ur nonmonotonic force profiles.

case shows monotonic behavior and yields simple expres-

sions for the force as a function of compression. There are | C.B.M. acknowledges support from RSPHYSSE.

several possible extensions of the approach used here. OReR M.W. acknowledges support from ARC QEII and an
would be to use rods which are hinged but where the hingdRrc |arge grant.

pays an energy penalty for bending away from the surface
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