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Steric interaction of an incoming particle with grafted rods: Exact solutions
and unusual force profiles

I. C. B. Miller and D. R. M. Williams*
Research School of Physical Sciences, Institute of Advanced Studies, The Australian National University, Canberra, ACT 0200,

~Received 5 October 1999!

We examine the problem of a grafted rod or rods compressed by a sphere, concentrating on the steric force
exerted by the rods on the sphere. We show that this problem can be solved exactly to yield simple and
nontrivial expressions for the repulsive force. In particular, there are several different regimes and in some of
these the force exhibits surprising maxima and minima as a function of compression. This has applications to
systems of stiff grafted polymers, particularly biopolymers. One experimental realization of our system might
be a rod-coil diblock copolymer with the coil grafted to a solid surface.

PACS number~s!: 61.41.1e, 87.15.2v, 36.20.2r, 05.20.2y
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The interaction of grafted polymers with hard bodies is
fundamental importance in a number of fields, most nota
in colloidal stabilization@1# and cellular biology. Almost all
the focus has been on very flexible polymers, and our un
standing of these kinds of polymers grafted to surface
now very good@2,3#. There have been several attempts
model what happens when single or many grafted polym
chains are compressed by hard bodies@4–14#. This models
the situation for polymerically stabilized colloids as well
several biological scenarios such as the interaction betw
membrane proteins and foreign bodies. These studies
turned up some novel behavior, but have been subject to
major constraints. First, they have concerned, almost
tirely, very flexible chains. They are thus not applicable
many biopolymers, which are relatively rigid. Second, th
often involve approximations, sometimes of a rather unc
trolled kind. In this Rapid Communication we try and fill th
gap by examining the case of a rigid rodlike polymer te
ered to a surface and compressed by an incoming sph
This system has two relatively different features. First, it c
be solved exactly to yield mathematically simple solutio
Second, the force curves are nontrivial, and this appare
simple system can exhibit several regimes, often w
maxima and minima in the force as a function of compr
sion.

Our geometry is shown in Fig. 1. A rodlike molecule
length L is tethered by one end to a surface. The tethe
such that the rod is free to rotate anywhere above the sur
with no energy penalty. The rod is then compressed b
sphere of radiusR, with surface-to-surface distance betwe
the sphere and the tether surface equal toH. The distanceH
is the independent variable in our problem, and the fo
between the sphere and the rod is the dependent variab
is convenient to begin by settingR51, so all lengths are
measured in terms of the sphere radius. We consider firs
symmetrical case where the center of the sphere is dire
above the tether point (d50 in Fig. 1!. The general expec
tation would be that asH is slowly decreased belowL, the
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sphere experiences a gradually increasing force, due to
reduction in entropy of the rod upon confinement. We w
show that this is often not the case. In some regimes
force actually decreases asH decreases and in others in ca
show both a minimum and a maximum as a function ofH.

We begin with a slightly simpler problem, in which th
force does behave in an intuitive way. In this we replace
sphere of radiusR51 by a disk of radiusR51, again cen-
tered above the tether point. In this scenario there are th
compression regimes:

~i! H.L; the rod never touches the disk.
~ii ! L221,H2,L; the rod can touch the disk, but cann

reach the edge of the disk.
~iii ! H2,L221; the rod can only touch the disk at it

edge.

It is clear that regime~iii ! can only occur ifL.1. We can
evaluate the configurational partition function for the syst
in all three compression ranges. If we use a spherical p
coordinate system with the normal to the tether surface as
z axis andu the angle made by the rod with that axis, th
partition function is

Z5E
0

2p

dfE
um

p/2

du sinu52p cosum , ~1!

FIG. 1. Geometry for compression by a sphere. At left is t
case where the rod is touching, but not tangent to the sphere
right is the case where the compression is stronger and the ro
tangent.
R4706 ©2000 The American Physical Society
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whereum is the minimum possible angle made by the r
with the normal. We can find cosum in all three regimes as
~i! cosum51; ~ii ! cosum5H/L; ~iii ! cosum5H/AH211.

This allows us to find the Helmholtz free energyF
52kT ln Z in each case and hence the repulsive forcef
52(]F/]H). The forces in all the cases can be evaluated

f 150,

f 25kT
1

H
, ~2!

f 35kT
1

H~11H2!
.

Upon compression the force behaves in an expected wa
increases monotonically with increasing compression, bu
noncontinuous at the disc edge.

We now carry out the same procedure for the sphere p
lem. One important point is that there are again three co
pression regimes~Fig. 1!:

~1! H.L, the rod and sphere never touch.
~2! AL21121,H,L, the rod and the sphere can tou

but the rod ends at the sphere, i.e., it is not tangential to
sphere.

~3! H,AL21121, the rod can touch the sphere, a
when it does it is tangential to it.

From the geometry we can readily evaluate cosum in each
case. We find:~1! cosum51; ~2! cosum5@L21H212H/2L(1
1H)#; ~3! cosum5AH212H/11H. The forces are then

f 150,

f 25kT
212H1H22L2

~11H !~L21H212H !
, ~3!

f 35kT@H~H12!~11H !#21.

The force in regime~1! is as expected: if the sphere an
rod cannot touch there can be no steric force. The forc
regime ~3! where the rod is tangential is also much as o

FIG. 2. Force vs height curve for the caseL50.9,d50. The
force is in units ofkT/R and all lengths are in units ofR. In this
case the force is a monotonically increasing function of comp
sion. It undergoes a sudden jump at contact and a sudden chan
slope at the crossover between the tangent and nontangent reg
s

, it
is
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-

e
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would expect: it increases monotonically with compress
and is1

2 kTH21 for H!R. The unusual behavior comes from
regime~2!. One surprise is that the functionf 2 describing the
force in regime ~2! exhibits a maximum atH521

1A(21A5)L2222A5. This maximum implies that in
some cases the compression of the rod exhibits a force w
initially decreases as the rod becomes more compressed
examine this further we note thatf 2 is the valid force only in
the regimeAL21121,H,L. This gives us the conditions
that the maximum occurs in the physical regionL1,L,L2,

where L15 1
2
A212A5'1.272 and L25(31A5)(1

1A5)21'1.618. If these conditions are satisfied, the for
will exhibit a maximum as a function of compression.

There are three scenarios for the force versus compres
curve, and these are controlled byL. The first~Fig. 2! is for
L,L1, i.e., for rods which are smaller than or close to t
sphere radius. In this case the compression is as one w
expect. AsH is gradually decreased there is a sudden ju
from f 50 to f 5kTL21(11L)21 at H5L. The force then
increases monotonically with compression. There is a ju
in the slope of the force atH5AL21121, where the rod
changes from nontangential to tangential, but the force it
is always a monotonic function of compression.

The second case~Fig. 3!, L1,L,L2, is nontrivial. Again
as H is decreased belowL there is a jump in the force
However, in this case the force rises to a maximum and t
decreases to a minimum before increasing again.

The third case~Fig. 4!, L.L2, is again surprising, be
cause asH decreases belowL the force also decreases.
then reaches a minimum atH5AL21121 and then in-
creases.

This calculation is for the case where the grafting poin
directly below the center of the sphere. There are three
ferent scenarios, two of them at least, not intuitively obvio
from a cursory examination of the problem. More genera
there will a distancedÞ0 between the grafting site and th
perpendicular from the sphere to the surface. FordÞ0 the
geometry looks more complicated and a solution by me
of a straightforward extension of thed50 case looks diffi-
cult. However, the problem is in fact easy, since it is only t
solid angle excluded by the sphere that matters. This depe
only on the distance from the grafting point to the center
the sphere. which isH85A(H11)21d221. To obtain
the correct partition function we thus replaceH by H8.
This allows us to calculate the force in three regim

s-
e in
es.

FIG. 3. Force vs height curve for the caseL51.5,d50. The
units are the same as Fig. 2. Note that the force now has a m
mum and a minimum.
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~1! H.A(11L)22d221; ~2! A11L22d221,H
,A(11L)22d221; ~3! H,A11L22d221.

The vertical forces in these regimes are

f 150,

f 25kT
~11H !~d21212 H1H22L2!

~d21112 H1H2!~L21d212 H1H2!
, ~4!

f 35kT
11H

~d21112 H1H2!~d212 H1H2!
.

The general casedÞ0 retains much of the same behavi

seen in the cased50. Ford.A2L1L2 there is always zero
force, i.e., the rod never touches the sphere. Also, ifd.L
then regime~3! never occurs. However, there are some d
ferences, particularly when we take the limitH→0, i.e., we
bring the sphere into contact with the grafting surface. F
d50 we find a force which diverges as12 H21. In the case
L,d,A(L11)221 the force at contact is finite,

f 2 contact5kT
d2122L2

~d211!~L21d2!
. ~5!

Even in the cased,L the force is still finite,

f 3 contact5kTd22~d211!21. ~6!

The reason for this lack of divergence whendÞ0 is clear.
When d50 the rod has no freedom to move whenH50.
However, whendÞ0 the rod can have significant freedom
rotate even when the sphere is touching the grafting surf

One other significant difference betweend50 anddÞ0
is the presence of a horizontal force on the sphere. This fo
can be calculated by takingkT] lnZ/]d. It turns out that this
force is always equal tod/(H11) times the vertical force
i.e., the force vector always lies on a line connecting
grafting site and the center of the sphere.

The most notable feature of the force curves is that t
are often nonmonotonic, and it is natural to ask why t
occurs. The partition function,Z, measures the orientationa
freedom of the rod: the largerZ is, the more freedom the ro
has. The force depends on howZ changes withH. ClearlyZ
always decreases withH so the force is positive. However,f
can increase or decrease depending on the local geome

FIG. 4. Force vs height curve for the caseL51.7,d50. The
units are the same as Fig. 2. After the initial jump at contact
force decreases as the compression increases.
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the compressing surface. It is easy to show that for w
compressions by any surface of revolution thatf
52kTum8 um , and that the slope of the force curve is th
f 852kT(um8

21u m9 um), where the prime meansd/dH.
Clearly if um9 is sufficiently negative the force can actual
decrease with decreasingH. This can be made more concre
by considering weak compression by power-law surfaces
revolution,z5Auxua, whereA anda are positive constants
Calculation shows that at contactf 8,0 for a<2 and fora
.4. However, for 2,a,4, f 8.0. The slope of the force
thus depends rather subtly on the compressing surface
for 2,a,4 we expect nonmonotonic force curves.

Thus far we have shown that the case of a single rod
be solved exactly and has nontrivial behavior. Although t
is an interesting problem in itself, a natural question to as
what occurs if we have many rods grafted to a plane, withr
rods per unit area@15#. We can solve this problem exactly
and obtain very simple expressions for the force in the lim
where the rods do not interact with each other, i.e., in
limit where the rod diameter,drod→0. We integrate the
force from rods between an in plane radiusr and r 1dr. If

H.A11L221 then the only force that contributes isf 2 and
we need to integrate 2prd f2 from r 50 to r

5A(11L)22(11H)2. This leads to a simple force law,

f A52prkT~11H !lnF 2L~H11!

L21H212H
G , H.A11L221.

~7!

If H,A11L221 then the region of integration needs to

divided in two. An inner circle of radiusAL22H222H

where f 3 contributes, and an outer annulus to radiusr

5A(11L)22(11H)2, where f 2 contributes. The total
force in this region is again fairly simple,

Fb52prkT~11H !lnF 11H

AH~H12!
G , H,A11L221.

~8!

The behavior of this multirod system is simpler than t
single rod system and there is only one type of force cur
shown in Fig. 5. Several things are to be noted. First,
force is always a monotonically increasing function of co

e FIG. 5. Force curve for a brush of rods withL52. The force is
in units of kTr/R, and all lengths are measured in units ofR.
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pression. The initial force atH5L is 0, and for small com-
pressions is 2prkT(L2H)/L. Thus, a brush of rods has n
sudden jump in force at contact. Moreover, the initial
crease in force is larger for shorter brushes. For comp
sions belowH5A11L221 the force curve is universal in
that it depends only onH and not on the length of the rods
For very strong compressions,H→0, the force diverges as
2 lnH.

In this paper we have shown that a simple and exa
solvable model of grafted rods interacting with a sphere
hibits somewhat surprising and nontrivial behavior. Much
the novelty comes from the interaction of a single rod with
sphere, which produces several different scenarios and
erally exhibits a nonmonotonic force curve. The many-r
case shows monotonic behavior and yields simple exp
sions for the force as a function of compression. There
several possible extensions of the approach used here.
would be to use rods which are hinged but where the hi
pays an energy penalty for bending away from the surf
s

ir
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normal. It is likely this problem can be solved exactly, but
the expense of more complicated expressions for the fo
The second extension would be to include rod-rod inter
tions. It is unlikely that an exact solution to this could b
found, although a virial expansion may provide some a
proximate expressions. Here we have calculated only
steric forces. Naturally there are other forces such as dis
sion forces and electrostatic forces which need to be inclu
in a real experimental system. We have also concentrate
the case of an external particle with a given position. Ther
another class of problems where the force is the indepen
variable and the compression is measured. In these kin
problems sudden jumps in the height can occur as a resu
our nonmonotonic force profiles.
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